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Abstract This paper presents the results of a sensitivity analysis of the character-

istics of discrete fracture network (DFN) connectivity. The sizes of the maximum

and mean clusters comprising the DFN and the distribution of the connectivity index

were estimated. Attention was primarily directed to the global sensitivity analysis

of these characteristics. Sobol sensitivity indices were used to determine the relative

contribution of the DFN model parameter uncertainty to the total uncertainty of the

studied problem. Dominant Sobol indices for different DFN models and each frac-

ture connectivity characteristic were determined. The analysis of the results allowed

the identification of the parameters whose relevant probability distributions are most

important for the correct description of the studied statistical model.

Keywords Discrete fracture network · Sensitivity analysis · Sobol indices ·
Connectivity index

1 Introduction

The spatial distribution of fracture systems and fracture connectivity is important in

many geoscience problems. For example, the distribution can significantly affect DFN

hydraulic properties (De Dreuzy et al. 2001, 2004; Lei et al. 2017) and seismic wave

propagation through subsurface reservoirs (Novikov and Lisitsa 2018). Rubino et al.

(2017) found that the connectivity of fractures can reduce the velocity anisotropy.

Hunziker et al. (2018) and Caspari et al. (2019) further studied the dependence of

seismic attenuation on fracture connectivity.
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Due to the complex nature of fractured reservoirs and the lack of observational

data, a fully deterministic description of fracture system geometry is usually impos-

sible. Therefore, a statistical approach is often used to generate a statistical ensemble

of realizations of fracture systems (Xu and Dowd 2010; Miyoshi et al. 2018). This

approach allows not only estimation of the average values of the interest quantities but

also evaluation of the corresponding probability distributions. For example, it can be

used in uncertainty quantification (Berrone et al. 2018) or sensitivity analysis (Jafari

and Babadagli 2009; Kolyukhin 2018).

Many studies are devoted to the characterization of statistical DFN models, includ-

ing analysis of fracture sizes, orientations, spacing, and spatial positions (Baecher et al.

1977; Long et al. 1982; Massart et al. 2010; Miyoshi et al. 2018). For example, De

Dreuzy et al. (2001) investigated the influence of power-law distribution parameters

of fracture lengths on DFN connectivity. The dependence of DFN permeability on the

spatial correlation of fracture centers was studied by De Dreuzy et al. (2004). In a

study by Cacas et al. (1990), the stochastic model of a fracture network in crystalline

rocks was developed to investigate potential nuclear waste repository sites. Several

statistical models of rock-joint systems were suggested in a study by Dershowitz and

Einstein (1988). Most of the general approaches to statistical simulation of statistical

DFN models are described by Dowd et al. (2007) and Xu and Dowd (2010). Examples

of explicit statistical DFN modeling are described by Min et al. (2018) and Protasov

et al. (2019).

Many works are devoted to natural fracture systems using fractals and multifractals,

which describe the spatial distribution of fractures (e.g., Bonnet et al. 2001; Bour et al.

2002). In particular, this approach allows statistically describing such a phenomenon

as the clusterization of fractures (Schueller et al. 2013). Ouillon and Sornette (1996),

Bour et al. (2002) and Du Bernard et al. (2002) studied fracture systems in Saudi

Arabia, Norway, and Egypt. Analysis of these fracture systems at different scales

and estimation of fractal dimensions confirmed the fractal nature of these geological

objects. Later, such studies were conducted by Rouai (2016) and Cai et al. (2017).

This study followed Darcel et al. (2003) by applying a similar approach to consider

the positions of the fracture centers as a fractal set.

Sensitivity analysis (SA) was intended to demonstrate how different parameters

affect the modeling results. Traditional approaches are local methods based on the

calculation of the perturbations around some state of parameters. The purpose of

global sensitivity analysis (GSA) is to study the relative impact of different sources

of uncertainty in the model input parameters on the uncertainty of the model output

(Saltelli 2005). GSA is typically used to study complex nonlinear models and may

determine significant and insignificant parameters, reduce the problem’s dimension-

ality and improve the understanding of the model’s behavior (Reuter and Liebscher

2008). This work applies the GSA approach based on Sobol indices (Sobol 2001).

These indices allow us to estimate the relative contribution of the model parame-

ter uncertainty to the total variance of the solution. The advantage of this method is

the ability to consider the influence of individual parameters and their interaction.

The effective Monte Carlo method for numerical estimation of the Sobol indices was

developed by Sobol et al. (2007).
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In this study, GSA was applied to study the uncertainty of DFN connectivity char-

acteristics such as cluster size and connectivity index. The distribution of the clusters

composing the DFN is its significant characteristic. The size of fracture clusters in

seismic waves was studied by Hunziker et al. (2018). For example, Hirthe and Graf

(2015) used the sizes of fracture clusters as parameters in the statistical modeling of

DFNs. The connectivity index (CI) is another essential statistical property of the DFN

that quantifies the connectivity between any two spatial points in the reservoir (Xu

et al. 2006). Novikov and Lisitsa (2018) studied the dependence of seismic attenuation

on the CI. Wang et al. (2018) showed the significant impact of the CI on shale gas

production.

This paper aimed to develop a methodology for determining the parameters of a

DFN statistical model whose probability distributions are essential for reproducing

the considered attributes of fracture connectivity.

2 Statistical Modeling of DFN

This study investigated the statistical models of DFN. The models are described by

parameters that specify the probability distributions of a center’s positions, lengths, and

orientation of the fractures. This approach allows explicit statistical modeling of the

geometry of DFNs (Xu and Dowd 2010). In particular, fracture centers are generated

from a fractal spatial density distribution defined by its fractal dimension. In contrast,

fracture orientations and lengths are described by normal, lognormal, or power-law

distributions. The general methods for statistical modeling of random variables with

given probability distributions are described by Rubinstein (1981).

Multifractals are generalizations of fractals. In general, their spatial distribution is

characterized by an infinite multifractal spectrum (Xie et al. 1999)

D−∞ ≥ · · · ≥ D0 ≥ · · · ≥ D∞. (1)

In this study, the distribution of the fracture centers was modeled as a monofractal set

for which the dimensions shown in Eq. (1) should be equal.

In the fractal and multifractal models, the studied domain was covered by a regular

grid of linear mesh size ǫ. The i-th cell is characterized by the probability pi (ǫ) that

an arbitrary fracture center xj, 1 ≤ j ≤ N falls in this cell. Multifractal dimensions

are defined as (Xie et al. 1999)

Dq =

⎧

⎪

⎨

⎪

⎩

1
q−1

limǫ→0

ln
(

∑N (ǫ)
i=1 p

q
i (ǫ)

)

ln ǫ
, q �= 1

limǫ→0

∑N (ǫ)
i=1 pi (ǫ) ln pi (ǫ)

ln ǫ
, q = 1

. (2)

Particular attention in this study was paid to dimension D2, which is also called

the correlation dimension. Grassberger and Procaccia (1983) suggested the efficient

method of D2 estimation based on using Eqs. (3) and (4)

C2(r) = lim
N→∞

2

N (N − 1)

∑

i< j

�(r − |xi − xj|), (3)
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D2 ≈
ln C2(r)

ln r
. (4)

Here, N is the total number of fractures, x is a fracture’s position, r is a distance,

C2(r) is a pair correlation function, and �(r) is the Heaviside function whose value

is zero if the argument is negative or otherwise one. In the one-dimensional case, the

D2 values estimated by Du Bernard et al. (2002) were 0.87±0.05 and 0.84±0.06 by

Schueller et al. (2013). Bour et al. (2002) estimated the two-dimensional correlation

dimension D2 to be 1.77.

In this study, Eq. (5) was restricted with order q = 2. The iterative cascade algorithm

described by Darcel et al. (2003) was employed for the simulation of the fracture

centers’ spatial distribution. The whole studied domain is divided into equal cells, and

the probability value corresponding to the frequency of fracture centers is assigned

to each cell. The simulation began with one cell coinciding with the entire domain,

which was assigned probability value of P = 1. At the start of any iteration, each

subdomain dimension was divided into four equal parts. If the probability assigned to

the original subdomain equaled P , then the probabilities of the resulting subdomains

were P P1, . . . , P P4, in random order. The probabilities P1, . . . , P4 were defined by

conditions P1 + · · · + P4 = 1, P1, . . . , P4 ≥ 0 and the following equation

4
∑

i=1

P2
i

(

1
2

)D2
= 1. (5)

The fragmentation procedure for the first and second iterations is illustrated in Fig.

1. Top plots show the first iteration. Bottom plots illustrate the first step of the sec-

ond iteration consisting of fragmentation of the filled subdomain in the upper right

plot. Kolyukhin (2015) employed this algorithm for one-dimensional modeling of

the deformation bands’ spatial distribution with the fractal distribution extended for

q > 2.

This study considered two qualitatively different DFN models. Inspired by Long

et al. (1982), the first model consists of two families of fractures whose orientation

has a normal probability distribution. In this case, the fracture lengths are distributed

according to the lognormal distribution.

Based on the analysis of fracture systems conducted by Bahat (1987) and Bonnet

et al. (2001), the second DFN model consisted of three sets of fractures with lengths

described by a truncated power-law distribution

p(L) ∼ L−α, L ∈ [Lmin, Lmax].

The default DFN parameters are shown in Tables 1 and 2. In all models considered

in this study, fracture centers were generated in the domain � = [0, 5m] × [0, 5m].
Figure 2 shows the realizations of DFN with the parameters from Tables 1 (left) and

2 (right).

123



Math Geosci (2022) 54:225–241 229

Table 1 Parameters of the first DFN model

DFN parameter values Set 1 Set 2

Fractures intensity (Number/m2) 4 4

Fractures orientation φ◦. Normal distribution N (mφ , σφ). 30, 5 150, 5

Fractures length L(m). Lognormal distribution (mL , σ 2
L

) 0.4, 0.1 0.3, 0.075

Correlation dimension D2 1.75 1.75

Table 2 Parameters of the second DFN model

DFN parameter values Set 1 Set 2 Set 3

Fractures intensity (Number/m2) 3 3 3

Fractures orientation φ◦. Normal distribution N (mφ , σφ). 30, 5 60, 5 345, 5

Fractures length. Power-law distribution α 2.1 2.1 2.1

Correlation dimension D2 1.75 1.75 1.75

Lmin(m), Lmax(m) 0.1, 10 0.1, 10 0.1, 10

Fig. 1 Simulation of the

fracture centers’ spatial

distribution. Illustration of the

modeling scheme suggested in

(Darcel et al. 2003, Fig. 1). The

first iteration (top plots) and the

first step of the second iteration

(bottom plots)

First iteration

First step of second iteration

P +1 P +P +P
=1
2 3 4

P2 P1

P4 P3

P P2 1 P P2 4

P P2 3 P P2 2

P2

3 Global Sensitivity Analysis and Sobol Indices

The purpose of the sensitivity analysis was to estimate the impact of uncertainty caused

by random parameter variability on the total uncertainty of the model. In this study,

the approach suggested by Sobol (2001) was applied. The proposed method based on

123



230 Math Geosci (2022) 54:225–241

0 1 2 3 4 5

X

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Y
Model 1

0 1 2 3 4 5

X

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Y

Model 2

Fig. 2 Examples of DFN realizations with the parameters in Tables 1 (left) and 2 (right)

analysis of variance (ANOVA) uses the decomposition of the integrable function f (x)

f (x1, . . . , xn) = f0 +
n

∑

i=1

fi (xi )+
n

∑

i=1

n
∑

j=i+1

fi, j (xi , x j )+· · ·+ f1,...,n(x1, . . . , xn),

(6)

where
∫

fi1,...,im (xi1 , . . . , xim )dxk = 0, k = i1, . . . , im, (7)

and the Sobol sensitivity indices are defined as

Si1,...,im =
Vi1,...,im

V
. (8)

Here, V is the total variance

V =
∫

f 2(x)dx − f 2
0 , (9)

and variances Vi1,...,im have the form

Vi1,...,im =
∫

f 2
i1,...,im

(xi1 , . . . , xim )dx1 . . . dxm . (10)

This approach allowed the ranking of the model parameters by the relative impact on

the variance of the solution to the problem.

The Sobol indices defined by Eq. (8) were estimated using the Monte Carlo method

developed by Sobol et al. (2007). Table 3 shows the parameters of the DFN model

considered in the sensitivity analysis. The numbering of the parameters in this table

denotes the Sobol indices Si1,...,im .

All model parameters were divided into two subsets

x = (y, z). (11)
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Table 3 Parameters of the DFN model used for the sensitivity analysis

DFN parameters Parameter number

The positions of the fracture centers 1

Fractures length L 2

Fractures orientation φ 3

In the first step of the employed method, it is necessary to generate the NR realizations

of the set of 2n independent random values

(ξ, η), (ξ ′, η′), k = 1, . . . , N . (12)

The estimation of variance Vy has the form

Vy ≈
1

N

N
∑

k=1

f (ξ, η)
(

f (ξ, η′) − f (ξ ′, η′)
)

. (13)

The standard estimation of Monte Carlo error is applied to evaluate the accuracy of

numerical computations. 95% confident interval for statistical estimation ξ has the

form

Si1,...,im ± 1.96
σξ√
NR

, (14)

where σξ is a standard deviation of ξ .

4 Cluster Size Sensitivity Analysis

This section describes the analysis of the fracture cluster sizes. Statistical modeling was

employed to generate an ensemble of NR DFN realizations. Each generated DFN was

divided into nonintersecting clusters of intersecting fractures. The maximum and mean

cluster sizes were estimated for each realization. Cluster size (CL) was the longest in

the X or Y direction. Furthermore, these values were averaged over the ensemble as the

arithmetic means of the values for each realization. The primary goal was to analyze

the sensitivity of these cluster sizes to the model parameters. The dependencies of the

significant Sobol indices on the number of fractures N , the correlation dimension D2,

the parameters of fracture length distribution, and the standard deviation of fracture

orientation distributionσφ were studied. In all computations, the number of realizations

was NR = 6 · 105.

4.1 Dependence on the Number of Fractures

Figure 3 shows the dependencies of the mean value < CL > and standard deviation

σ(CL) of the maximum and average cluster sizes on the number of fractures N . The

figure shows that the maximal cluster size increases with an increase in the number of
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Fig. 3 The dependence of the mean value and standard deviation of the maximum (CLmax) and average

(CLmean) cluster sizes on the number of fractures for Model 1 (left) and Model 2 (right)
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Fig. 4 The dependence of significant sensitivity indices for the maximum (Smax) and average (Smean)

cluster sizes on the number of fractures for Model 1 (left) and Model 2 (right)

fractures for both models. On the other hand, other characteristics in these plots are

less dependent on N . For example, the average cluster size for the second model does

not increase with an increase in the number of fractures. This is due to an increase in

the number of small clusters and unconnected fractures. As shown in the left plot in

Fig. 3, the standard deviation does not exceed 5% of the mean for the average cluster

size (circle markers). Therefore, here and below in Sect. 4, for the first model, the

sensitivity analysis was performed only for the size of the maximum cluster.

The dependence of the significant sensitivity indices on the number of fractures is

shown in Fig. 4. For this and other dependencies in Sect. 4, S1, S2, S12, and S123 are

the significant indices for the first model, whereas S2, S12, and S123 are the significant

indices for the second model. For all of the models, the S2 index decreases with

increasing N . This means that with an increase in the number of fractures, the number

of intersections increases, and the structure of the DFN becomes more complex. This

increases the importance of the mixed S12 and S123 indices. On the other hand, the

first-order index S2 is still dominant in the second model because of the long fractures

generated according to the power-law distribution. The exception is the average cluster

size for the second model and large N values. In this case, the mixed S12 index is

dominant.
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Fig. 5 The dependence of the mean and standard deviation on the maximum (CLmax) and the average

(CLmean) cluster sizes on the correlation dimension D2 for Model 1 (left) and Model 2 (right)
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Fig. 6 The dependence of significant sensitivity indices for the maximum (Smax) and average (Smean)

cluster sizes on the correlation dimension D2 for Model 1 (left) and Model 2 (right)

4.2 Dependence on the Correlation Dimension D2

The left plot in Fig. 5 shows that the mean values of the maximum and average cluster

sizes decrease with increasing D2, corresponding to a more uniform distribution of

fracture centers. The left plot in Fig. 6 shows that the S1 index decreases and the

S2 index increases as D2 increases. The effect is that the distribution of fracture

centers makes a more significant contribution to the total dispersion under increased

clustering. In contrast, the length distribution results in a greater impact on the uniform

distribution of the fracture centers. At the same time, the dominant mixed indices S12

and S123 are less dependent on the correlation dimension.

On the other hand, on the right plots in Figs. 5 and 6, the studied characteristics do

not depend on D2. This may result from the greater complexity of the second model

due to the more significant number of fracture sets and the greater scatter of fracture

lengths. The degree of clustering of the centers of the fractures no longer affects the

results of the sensitivity analysis.
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Fig. 7 The dependence of the mean and standard deviation of the maximum (CLmax) and average (CLmean)

cluster sizes on the parameters σL for Model 1 (left) and α for Model 2 (right)
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Fig. 8 The dependence of significant sensitivity indices for the maximum (Smax) and average (Smean)

cluster sizes on the parameters σL for Model 1 (left) and α for Model 2 (right)

4.3 Dependence on Fracture Length Distribution

An increase in the standard deviation σL in Fig. 7 (left plot) leads to an increase in the

maximum cluster size. For the second model (right plot), the maximum cluster size

increases with decreasing α value, corresponding to an increase in the number of long

fractures. In turn, the average cluster size does not depend on the parameters of the

fracture length distribution, similar to the dependencies in Fig. 3.

As shown in Fig. 8, S2 values increase with the increase in σL and α. In the left

plot, this coincides with an increase in the variance of the fracture length. On the other

hand, in the right plot, S2 increases with a decrease in the values of the mathemati-

cal expectation and the variance of the fracture length. This shows a more complex

dependence of CL uncertainty on the fracture length for the second model. Perhaps

this is because, with a decrease in the length of individual fractures, the number of

intersections decreases. In turn, this leads to a reduction in the contribution of the

mixed indices.
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4.4 Dependence on the Variance in the Distribution of Fracture Orientation

Sensitivity indices were also estimated for different values of σφ . Figure 9 shows that

<CL> and σ(CL) do not depend on the variance of fracture orientation. However,

as shown in Fig. 10 the value of index S123 increases with an increase in the standard

deviation σφ . Thus, the contribution of orientation to the model uncertainty appears

in the behavior of the index describing the mixed impact of all three parameters.

Figure 3 through 10 show only the significant sensitivity indices whose values

significantly exceeded the statistical error of the numerical computations. For com-

parison, Fig. 11 shows the Sobol indices Smax
13 and Smean

1 compared with the statistical

error estimated by Eq. (14) for the first and second models. The right plot shows that

Smean
1 may exceed 5%, but those values are comparable with the related statistical

error.

5 Sensitivity Analysis of the Connectivity Index

The CI (connectivity index) τ(x, y), a characteristic of DFN connectivity, was intro-

duced by Xu et al. (2006). τ(x, y) is equal to the probability that fractures connect
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Fig. 9 The dependence of the mean and standard deviation of the maximum (CLmax) and average (CLmean)

cluster sizes on σφ for Model 1 (left) and Model 2 (right)
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Fig. 10 The dependence of significant sensitivity indices for the maximum (Smax) and average (Smean)

cluster sizes on σφ for Model 1 (left) and Model 2 (right)
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points x and y

τ(x, y) = P(x ↔ y). (15)

The CI values between the central cell and the surrounding cells were estimated in

this study. The estimated values were averaged over the number of statistical DFN

realizations. Figure 12 illustrates the CI and the total variance V of the two models.

The major Sobol indices for the CI are shown in Fig. 13 for the first model and 14

for the second model. These figures show that the indices are distributed differently

in the modeling domain. S1 and S12 are the significant sensitivity indices for the CI of

the first models. Figure 13 shows the values of these sensitivity indices in the domain

where the variance is not less than 1% of its maximum value. From this plot, it is clear

that the τ uncertainty for this model is almost fully determined by the uncertainty in

the fracture center positions.

The significant sensitivity indices of τ for the second DFN model are S1, S12,

S13, and S123. Figure 14 shows these indices in the domain where the variance is not

less than 5% of its maximum value. The figure shows that index S1 is dominant in

the central part of the studied domain only. This means that this model parameter

primarily affects the variance of the CI of cells that are close to each other. As the

distance between cells increases, this dependence becomes more complex, and the

uncertainty of the CI is determined by the Sobol indices S12 and S123. The parameters

describing fracture lengths and orientations are also significant.

6 Conclusions

In this study, a numerical sensitivity analysis of two qualitatively different statistical

DFN models (Figs. 2 and 3) was conducted with the parameters shown in Tables 1

and 2. The values of the maximum and mean cluster sizes constituting the DFN were

investigated. The global Sobol sensitivity indices characterizing the contribution of the

uncertainty of the model parameters to the total uncertainty of the considered functions

were estimated. The dependencies of the sensitivity indices on the main parameters

of the statistical models were studied.
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In the case of cluster sizes, the sensitivity indices behave differently in the two

models. S2, S12, and S123 are the significant indices for both models. In the first

model, considering the maximum cluster size, index S1 also becomes meaningful. In

the second model, the Sobol index S2 is dominant because of the longer length of

fractures. On the other hand, in the first model, indices S12 and S123 show the highest

values. However, with a decrease in the number of fractures and an increase in σL ,

indices S1 and S2 become dominant.

The analysis showed that the Sobol indices are weakly dependent on the correlation

dimension D2 (Fig. 6), which describes the clustering of the fracture centers. An

exception is indices S1 and S2 for the maximum cluster size in the first DFN model.

Mixed indices S12 and S123 are the most sensitive to variation in fracture orientation

variance (Fig. 10, left graph). S12 decreases and S123 increases with increasing σφ .

As shown in the right plot of Fig. 10, the curves corresponding to S123 also increase,

although it is less pronounced. In contrast, S3 remains negligible. This indicates an

implicit increase in the orientation influence described by the mixed index S123.

Numerical experiments showed a more complex dependence of the sensitivity

indices on the number of fractures and fracture length variance σ 2
L . As a result, we

conclude that for the models, the primary contributor to the uncertainty of the prob-
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lem is the uncertainty of fracture lengths. The influence of the uncertainty of the other

parameters is indirect and described by the mixed Sobol indices S12 and S123. How-

ever, as described in Sect. 4, index S1 describing the impact of the fracture position

uncertainty is also significant in some cases.

In the second part of this study, the connectivity index was evaluated, and the

corresponding sensitivity analysis was performed (Figs. 12, 13, 14). As with cluster

sizes, the sensitivity indices behave differently in the two DFN models. Moreover,

different indices determined the uncertainty of the CI in other subdomains. For both

models, the sensitivity index S1 determined by the position of the fracture centers is

the predominant value for the connectivity index of the close points. As the distance

between the points increases, the distributions of lengths (for both models) and the

orientation of fractures (for the second model) also become more significant.

In general, we can conclude that the complication of the model (for example, an

increase in the number of families or intersection of fractures) increases the number of

significant Sobol indices and the relative contribution of mixed indices characterizing

the interaction of model parameters. The results presented in this study can be helpful

for efficient statistical DFN modeling. They promote a qualitative understanding of

the parameters essential for the accurate description of the problem uncertainty.
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